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Preliminaries

Problem sets:
I PS2-4 will now have significant programming and data analysis

components, smaller theory component

Consultation session with Skand: Monday 6-8pm, Tisch 720, 10/1
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Hypothesis testing

We are often interested in testing theories, or testing hypotheses
about the values of certain parameters

Simplest example: testing whether mean of a variable µx ≡ E [X ] is
different from a particular value:

H0 : µx = a
H1 : µx 6= a

A hypothesis test typically involves a null hypothesis and alternative
hypothesis. The alternative hypothesis could also be about a
particular value (H1 : µx = b) or about a one-sided rejection of the
null (H1 : µx > a).
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Review: z test

If Xi is i.i.d. normal with known variance σ2, then

X ∼ N
(
µx ,σ2/n

)
In this case, we know the distribution of our estimate X . We can test

H0 : µx = a H1 : µx 6= a

using a z test.

We construct the test statistic

z =
X – a

n–1/2σ

which under the null hypothesis has the standard normal distribution:

z ∼ N (0, 1)
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Level and Size of Test

The size (or level) of a test is the probability of rejection if the null
hypothesis is true. The size is the rate of false positives or type I
errors.

When hypothesis testing, we make it hard to reject the null
hypothesis. We typically choose the size of the test to be small (most
commonly, .01 or .05).
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Power of Test

We typically want to reject only for the outcomes that are most likely
under the null hypothesis (or relatively more likely under the
alternative hypothesis than the null). For the z test above, we reject
only in the tails of the normal distribution. See: Neyman-Pearson
Lemma.

Choosing the rejection region appropriately maximizes the test’s
power, the probability of rejecting the null hypothesis when it is
indeed false . Power is often harder to quantify and not something we
typically choose. Power is one minus the rate of type II errors, or
failures to reject the null hypothesis when it is false.
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Rejection Region and Power
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Suppose X̄ is normally
distributed with Var

(
X̄
)

= 1

We want to test

H0 : µx = 1
H1 : µx = 4

The blue and red lines are the
PDF of x̄ under the null and
alternative hypotheses,
respectively

The shaded region is the
rejection region with level
α = .05 that maximizes power.
Note that this is for X̄ ≥ 2.65.
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Rejection Region and Power
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Note that the rejection region is
the region where the PDF of the
alternative hypothesis is high
relative to the null hypothesis.

The maximum power test with
level .05 is the test that rejects
for the 5% of the null-hypothesis
PDF in which H1’s likelihood
(probability density) is highest
relative to H0’s.

We often take for granted that
rejection regions are in the tails
of the null-hypothesis PDF;
this is why.
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Review: t Statistics

Let’s return to testing the value of a normally distributed random
variable’s mean, but now let’s suppose that σ2 is not known (which is
typically the case).

Our test statistic instead is

t =
X – a

n–1/2s

where

s =

√√√√ 1

n – 1

n∑
i=1

(
Xi – X

)
Here, t has a t-distribution with n – 1 degrees of freedom.

Paul T. Scott NYU Stern L4 - Inference Fall 2018 9 / 47



Testing Paradigm

We focus on different versions of Wald tests, which are based on test
statistics that are (approximately) normally distributed.

Other paradigms:
I Likelihood Ratio tests and fit-based tests. The idea here is to compare

how well different models fit the data
I Lagrange multiplier test: for example, testing whether residuals from a

restricted model are correlated with excluded variables.
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Motivating Small Sample t-Tests

Last week we learned that if N is large then,

bOLS
a∼ N (β, Var(bOLS ))

I This hinges on knowing Var(bOLS )
I We rarely know this in practice — we estimate it instead
I Like testing the mean of a normal random variable, estimating the

variance of the test statistic puts us in a t-test situation.
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t-Statistics for OLS Parameters

bOLS ,k – βk√
s2 (X′X)–1kk

∼ tn–K

where K is the number of parameters, s2 is the estimator of the
variance of ε, and (

X′X
)–1
kk

refers to the kth diagonal element of
(
X′X

)–1
.

Note that the denominator of the above formula is the standard error
for the kth estimated parameter bOLS ,k .
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The t-Distribution

Similar to the N (0, 1) but parametrized by degrees of freedom

The tails are fatter but become N (0, 1) as df go to ∞
The df will be n – 1 for a one variable regression and the cutoff values
can be found in the book
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Example of Reading a t-Table

Example of a table of critical values for t distrbution from a textbook:

Degrees of Freedom .10 .05

1 6.31 12.71
2 2.92 4.30
...

28 1.70 2.05
...
∞ 1.65 1.96

If N were very large we would use the N (0, 1) approximation which is
exactly the case that df =∞
If N <∞ we can use a table like this, or a computer does it for us

Example: If N = 29 then df = N – 1 = 28 the 5% cutoff value is 2.05
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An Example (Bivariate Regression)

Suppose I have the following estimated parameters on 29 observations

b1 =1.00

N∑
i=1

(Xi – X̄ )2 =14

N∑
i=1

e2i =100
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An Example (Bivariate Regression)

Suppose I have the following estimated parameters on 29 observations

b1 =1.00

N∑
i=1

(Xi – X̄ )2 =14

N∑
i=1

e2i =100

1. First, state the hypothesis:

H0 :β1 = 0

H1 :β1 6= 0
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An Example (Bivariate Regression)

Suppose I have the following estimated parameters on 29 observations

b1 =1.00

N∑
i=1

(Xi – X̄ )2 =14

N∑
i=1

e2i =100

2. Second, calculate s2:

s2 =
1

N – 2

N∑
i=1

(ei )
2 = 3.45
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An Example (Bivariate Regression)

Suppose I have the following estimated parameters on 29 observations

b1 =1.00

N∑
i=1

(Xi – X̄ )2 =14

N∑
i=1

e2i =100

3. Third, calculate t:

t =
β̂1 – β1(H0)√

s2/
∑N

i=1(Xi – X̄ )2
=

1.00√
3.45/14

= 2.015
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An Example (Bivariate Regression)

Suppose I have the following estimated parameters on 29 observations

b1 =1.00

N∑
i=1

(Xi – X̄ )2 =14

N∑
i=1

e2i =100

4. Compare to a critical value
I In this case because df = 28 we DO NOT REJECT the null
I If we had used the N (0, 1) we would narrowly reject the null
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An Example (Bivariate Regression)

Suppose I have the following estimated parameters on 29 observations

b1 =1.00

N∑
i=1

(Xi – X̄ )2 =14

N∑
i=1

e2i =100

5. We can also use the critical values to construct a confidence interval

CI = β̂ ± 2.05× SE (β̂) = 1.00± 2.05×
√

3.45/14 = [–.017, 2.017]

I Note that we use the t-distribution critical values!!
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Joint hypotheses

Sometimes we want to test multiple parameters:

H0 : βexp = 0 AND βexp2 = 0

H1 : βexp 6= 0 OR βexp2 6= 0

Note that we dont’ want to do two separate t-tests for this hypothesis.
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Illustration of Two t-Tests Failing

Suppose t-statistics are –1 and –2. Do we reject null?
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Illustration of Two t-Tests Failing

Suppose t-statistics are –1 and –2. Do we reject null?

If the t’s are independent this is the picture:
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The circle contains 95% of the
probability for two independent
t-statistics; the area outside it is
the rejection rejoin for the joint
t-test.

The dashed lines are the
rejection regions for each of the
individual t-tests. (5% level)

Even though naively would
reject, in actuality not significant

What happens with correlated
normal RVs?
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Bivariate normal: correlated and independent
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T-Tests with correlation

If the t’s are correlated this is the picture:
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Now, the area outside the ellipse
is the rejection region for the
joint t-test (5% level)

The dashed lines are the
rejection regions for each of the
individual t-tests. (5% level)

Now, notice that even with
t1 = –2, t2 = –2, which would
be a rejection according to each
of the individual tests, is not a
rejection of the joint test.
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Correcting for Correlation: The F-Test

The issues we have are:

1 Testing a joint hypothesis with independent tests will not give the
correct type 1 error

2 Correlated β̂’s make things very messy

How can we solve this?

First get a statistic that combines both hypotheses
I Should be “big” when either t1 or t2 or both are big
I Should include both t’s

Natural candidate:
F = t21 + t22

I Always positive and only big when t’s are big
I If t1 and t2 are independent normals, then F ∼ χ22
I If we divide by 2 we have F2 distribution
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Correcting for Correlation: The F-Test, Cont’d

Our candidate test:
1

2
× (t21 + t22 )

Has a well understood distribution when t’s are independent

If not, we can rotate the t’s so they are
I Non-matrix formula (for 2 parameters):

F =
1

2
×

t21 + t22 – 2ρt1,t2t1t2
1 – ρt1,t2

I Matrix version (for k parameters):

β̂ – β ∼ N
(

0, Σ
β̂

)
⇒ Σ

–1/2

β̂
×
(
β̂ – β

)
∼ N (0, I )

This implies,
(β̂ – β)′Σ–1(β̂ – β)/k ∼ χ2k/k = Fk
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What is the F Distribution?

New test statistic:

F =
1

2
×

t21 + t22 – 2ρt1,t2t1t2
1 – ρt1,t2

Almost always requires a computer

Ugly formula that follows a simple distribution

In general, for q restrictions, we will calculate the F statistic and it
will be distributed Fq (Fq,∞ sometimes)

Related to take the sum of squared normal random variables

Critical values will depend on the number of restrictions

Fun fact: for 1 restriction F = t2
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Critical Values of the F
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The F Distribution for 3 Restrictions

The distribution looks different than the t

But the testing procedure is the same!
I Find a critical value so that P(F > cv) = .05
I If F is large given the null then null is unlikely to be true
I Critical value depends on number of restrictions, q
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F-tests: General Definition

We are interested in testing the following linear restrictions on the
parameters:

Rβ = q,

where usually q = 0, but not always.

What would R and Q be if we were testing whether two slopes were
equal?

The F statistic (or feasible Wald statistic):

F =
(Rb – q)′

{
R
[
s2
(
X′X

)–1]
R′
}–1

(Rb – q)

J
,

which has a F [J, n – K ] distribution, where J is the number of rows of
R (the number of restrictions).
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F-Statistic Example

Start with example regression:

Score = β0 + β1Size + β2Size2 + β3Experience + U

To test β1 = β2 = 0, consider a new regression:

Score = β0 + β3Experience + U

We are re-running the regression imposing the restrictions

Idea: under the null hypothesis, the R2 should not increase much
between these two regressions
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F Statistic and R-Squared

Recall definition of R2:

R2 = 1 –
RSS

TSS

Use subscript r for restricted and ur for unrestricted regression. q
denotes number of restricted parameters.

Then if errors are homoscedastic:

F =
(RSSr – RSSur )/q

RSSur/(n – K )
=

(
R2
ur – R2

r

)
/q(

1 – R2
ur

)
/(n – K )

I The numerator measures the increase in explanatory power
I The denominator normalizes by how much noise remains
I This is distributed Fq,n–K
I Note: this relationship relies on homoscedasticity
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Non-Nested Models

We have considered only nested models thus far. When testing

Rβ = q,

we are testing a restricted linear model against alternative hypothesis
of an unrestricted linear model, which includes the restricted model
as a special case.

Sometimes we want to compare non-nested models, which brings us
to model selection. The main idea is to balance the model’s goodness
of fit and number of parameters: see adjusted R2, Akaike
Information Criterion, Bayesian Information Criterion.

Model selection criteria can be thought of as predictions of the
model’s out-of-sample fit. In contrast, machine learning approaches
directly try to maximize the model’s out-of-sample performance by
using different samples for estimation and validation.
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Heteroscedasticity

In the last lecture, we derived the following estimate of the variance of
b̂OLS :

Σ̂ = s2
(
X′X

)–1
=

s2

n

(
1

n

n∑
i=1

xix
′
i

)–1

where s2 is the estimate of the variance of the disturbances:

s2 = e′e/ (n – K ) .

This estimate is based on the assumption of homoscedastic
disturbances.

With heteroscedastic disturbances, we need to construct a different
estimator of Σ. Once we have that estimator, we can derive standard
errors from it and use it for testing in the same way Σ̂ was used above.
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Example: Engel Curves

Engel curves refer to the relationship between a household’s
expenditure share on a good and income (or total expenditure).

Engel curves for food are typically downward sloping – as total
expenditure of a household increases, the proportion of its expenditure
dedicated to food falls.

I Expenditure on food still rises as total expenditure rises, but less than
proportionally, so that food’s expenditure share falls.
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Food Engel Curves
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Data source: BLS Consumer Expenditure Survey data
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Heteroscedasticity Robust Standard Errors I

It is common to compute Eicker-Huber-White standard errors, which
is a different estimator of Σ that is consistent even if each observation
has a different variance σ2i :(

X′X
)–1 (

X′diag
(

e21 , e22 , . . . , e2n

)
X
) (

X′X
)–1

Statistical software typically makes it easy to use this estimator for Σ
instead of the standard homoscedastic estimator.
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Heteroscedasticity Robust Standard Errors II

We can rewrite the heteroscedasticity-consistent (or
heteroscedasticity-robust) standard error estimator as:

n–1
(

n–1X′X
)–1 (

n–1X′diag
(

e21 , e22 , . . . , e2n

)
X
)(

n–1X′X
)–1

,

where the middle piece of this “sandwich” estimator can be written as

n–1
∑
i

xix
′
ie

2
i

Notice that this is the sample analog of V [xiεi ]. What’s going on with
the robust standard error formula is we’re constructing an estimate of

n–1E
[
xix

′
i

]–1
V [xiεi ] E

[
xix

′
i

]–1
.

This is known as a sandwich estimator of variance.
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Doing a Heteroscedastic F-Test in R

Let us revisit the wage equation:

log(Wagei ) = β0 + β1Agei + β2Age2i + β3Educi + Ui

New question: does experience/age matter at all?

New hypothesis:

H0 : β1 = 0 and β2 = 0

Ha : β1 6= 0 or β2 6= 0

How do we test in R using heteroscedastic robust standard errors?

We need a new command:

First, we need the car package
I As a reminder, to install packages use the command:

install.packages("car")

I As a reminder, to load a package use the command: library(car)
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Doing a Heteroscedastic F-Test in R, Cont’d

Let us revisit the wage equation:

log(Wagei ) = β0 + β1Agei + β2Age2i + β3Educi + Ui

Red box is the name of the model

Command without boxes:

linearHypothesis(m1, c("age =0", "age2=0"), vcov = vcovHC(m1, type = "HC1"))
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log(Wagei ) = β0 + β1Agei + β2Age2i + β3Educi + Ui

Red box is the name of the model

Green box is the list of hypotheses:
I List enclosed by the c() command
I Each restriction is enclosed in quotes,

one equal sign and uses the names of the
variables from the model

I Don’t forget to separate commands with

commas

Purple box is the variance-covariance

argument

Command without boxes:

linearHypothesis(m1, c("age =0", "age2=0"), vcov = vcovHC(m1, type = "HC1"))
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Heteroscedasticity vs. Correlation

Recall that we defined the heteroscedasticity assumption as:

Var (ε) = σ2I

this assumption has two aspects:
1 The disturbance for each observation has the same variance
2 Imposing zero correlation between disturbances for different

observations

The terminology can be misleading here, because what people
typically refer to as “heteroscedasticity-robust” standard errors
(Huber-Eicker-White standard errors) are robust to violations of 1 but
not 2.

We need to do a bit more to estimate standard errors in a way that is
robust to correlated data.
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Correlation I

The baseline assumptions of the linear regression framework imply
that the disturbances are uncorrelated across observations. There are
many ways for this to be violated.

I Example 1: we might have county-level data for a regression and be
concerned that different counties within a given state have correlated
disturbances because all counties are subject to the same (unobserved)
state-level policies.

I Example 2: time series data (asset prices), and we are worried that
some unobserved factors within the disturbances are serially correlated

I Example 3: county level data again, and we are worried about
geographically correlated factors such as weather.
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Correlation II

Different correlation patterns call for different estimators of Σ, the variance
of bOLS Some common alternatives to the no-correlation baseline:

1 Clustered standard errors, when there is correlation between
observations within well-defined groups, but no correlation between
observations in different groups.

2 Newey-West standard errors (and extensions) to deal with serial
correlation in time series data.

3 Conley-Newey-West standard errors that allow for correlation in
multiple dimensions (especially popular in the context of spatially
explicit models).
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Clustering I

Suppose data are organized into distinct groups g = 1, 2, . . . , G . Let
g (i) be the group identity of observation i .

I e.g., with county-level data, we have g (Manhattan) = NY .

We assume
[
εiεj

]
= 0 as long as g (i) 6= g (j), and we do not restrict

the correlation
[
εiεj

]
for observations within the same group.

Intuition: the linear regression framework with no correlation in
observations will overstate the precision of our estimates. If we add
another observation within a cluster, and that observation is highly
correlated with the other observations, it’s not actually as good as
adding another independent observation.
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Clustering II

Recall the sandwich formula for standard errors:

n–1E
[
xix

′
i

]–1
V [xiεi ] E

[
xix

′
i

]–1
.

The estimator for the middle part without clustering was

V̂ [xiεi ] = n–1
∑
i

xix
′
ie

2
i

With clustering, it will be

V̂clu = n–1
n∑

i=1

n∑
j=1

xix
′
jeiej I [g (i) == g (j)]

where the I function is 1 when i , j come from the same group and
zero otherwise.
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Clustering III

The cluster-robust estate of standard errors will be consistent as the
number of groups gets large.

Note that this estimator adds extra terms (covariance terms) to the
estimate of variance, so this is going to make standard errors larger as
long as covariances E

[
εiεj

]
are positive.

Thus, if standard formulas are used in the presence of
cluster-correlated disturbances, standard errors will be too small.

Statistical software packages typically make it easy to compute
cluster-robust errors.
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Correlation III

Consider the cluster-robust estimator of the “meat” part of the
sandwich estimator:

V̂clu = n–1
n∑

i=1

n∑
j=1

xix
′
jeiej I [g (i) == g (j)]

For Conley-Newey-West standard errors (where there is correlation
between “nearby” observations), procedure is similar.

The difference is that instead of the 1/0 indicator function for I, we
will have a weighting (or kernel) function which takes on large values
for “nearby” observations and goes to zero for observations that are
far apart.
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Bootstrap I

Another approach to estimating the standard errors of bOLS is the
bootstrap

The basic idea:
1 Simulate a new data set by sampling (with replacement) from the

original data set
2 Estimate bOLS for the new data set.
3 Repeat lots of times, resulting in a bunch of different estimates of bOLS
4 Look at the variance of the bOLS estimates across the various

simulated data sets. This is your estimate of Σ.
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Bootstrap II

The bootstrap’s main appeal is that it can provide a better
finite-sample approximation of the distribution of the parameter
estimates.

I Note that the Eicker-Huber-White standard errors estimates are
consistent, but not generally unbiased in finite samples

I The bootstrap is probably worth trying if you’re ever working with
non-linear estimators (which can be consistent but are generally not
unbiasd in finite samples).

Also, it can potentially deliver good estimates of standard errors even
with correlated errors, but this depends on the version of the
bootstrap (see block bootstrap). Exploring formally the conditions
under which the bootstrap works well is beyond our scope.
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Confidence Intervals I

Note that if
b ∼ N (β, Σ)) ,

then
bk ∼ N (βk , Σkk) ,

and

Pr
[
bk – z(1–α/2)

√
Σkk ≤ βk ≤ bk + z(1–α/2)

√
Σkk

]
= α

where z(1–α/2) is the value such that the CDF of the standard normal
distribution is 1 – α/2.
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Confidence Intervals II

Similarly, when
bk – βk√

Σ̂kk

∼ tn–K

because the variance Σkk has to be estimated, then

Pr

[
bk – t(1–α/2),n–K

√
Σ̂kk ≤ βk ≤ bk + t(1–α/2),n–K

√
Σ̂kk

]
= α

where t(1–α/2),n–K is the value such that the CDF of the
t-distribution with n – K degrees of freedom is 1 – α/2.
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Confidence Intervals III

We define the 1 – α confidence interval for bk as(
bk – t(1–α/2),n–K

√
Σ̂kk , bk + t(1–α/2),n–K

√
Σ̂kk

)

Note that this confidence interval is a function of the data – the end
points of the confidence interval are statistics and therefore random
variables in their own right.

Defining the confidence interval in this way, the probability that the
confidence interval contains the true parameter is 1 – α. That is, if
α = .05, this is called a 95% confidence interval, and there is a 95%
chance it will contain the true parameter.

Paul T. Scott NYU Stern L4 - Inference Fall 2018 46 / 47



Summary

Linear regression theory gives us formulas for estimating Var (bOLS )

We can use that variance estimator to test hypotheses about
parameters (using t-Tests and f-Tests) as well as construct confidence
intervals.

When the baseline assumptions of the linear regression model are
violated (due to correlation or heteroscedasticity), we need to use
somewhat more complex formulas to estimate Var (bOLS ).
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